generalized velocity

generalized velocity
apibendrintasis greitis statusas T sritis fizika atitikmenys: angl. generalized velocity vok. generalisierte Geschwindigkeit, f rus. обобщённая скорость, f pranc. vitesse généralisée, f

Fizikos terminų žodynas : lietuvių, anglų, prancūzų, vokiečių ir rusų kalbomis. – Vilnius : Mokslo ir enciklopedijų leidybos institutas. . 2007.

Look at other dictionaries:

• generalized velocity — apibendrintasis greitis statusas T sritis Standartizacija ir metrologija apibrėžtis Greitis, susijęs su apibendrintuoju judesio kiekiu. atitikmenys: angl. generalized velocity vok. generalisierte Geschwindigkeit, f rus. обобщенная скорость, f… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

• Velocity obstacle — The velocity obstacle VOAB for a robot A, with position xA, induced by another robot B, with position xB and velocity vB. In robotics and motion planning, a velocity obstacle, commonly abbreviated VO, is the set of all velocities of a robot …   Wikipedia

• Generalized coordinates — By deriving equations of motion in terms of a general set of generalized coordinates, the results found will be valid for any coordinate system that is ultimately specified. cite book |last=Torby |first=Bruce |title=Advanced Dynamics for… …   Wikipedia

• Generalized Newtonian fluid — A generalized Newtonian fluid is an idealized fluid for which the shear stress, tau; , is a function of shear rate at the particular time, but not dependent upon the history of deformation.: au = Fleft( frac {partial u} {partial y} ight) where:… …   Wikipedia

• mechanics — /meuh kan iks/, n. 1. (used with a sing. v.) the branch of physics that deals with the action of forces on bodies and with motion, comprised of kinetics, statics, and kinematics. 2. (used with a sing. v.) the theoretical and practical application …   Universalium

• Hamiltonian mechanics — is a re formulation of classical mechanics that was introduced in 1833 by Irish mathematician William Rowan Hamilton. It arose from Lagrangian mechanics, a previous re formulation of classical mechanics introduced by Joseph Louis Lagrange in 1788 …   Wikipedia

• Scleronomous — A mechanical system is scleronomous if the equations of constraints do not contain the time as an explicit variable. Such constraints are called scleronomic constraints. Application:Main article：Generalized velocityIn 3 D space, a particle with… …   Wikipedia

• Monogenic system — In physics, among the most studied physical systems in classical mechanics are monogenic systems. A monogenic system has excellent mathematical characteristics and is very well suited for mathematical analysis. It is considered a logical starting …   Wikipedia

• Canonical coordinates — In mathematics and classical mechanics, canonical coordinates are particular sets of coordinates on the phase space, or equivalently, on the cotangent manifold of a manifold. Canonical coordinates arise naturally in physics in the study of… …   Wikipedia

• Matrix (mathematics) — Specific elements of a matrix are often denoted by a variable with two subscripts. For instance, a2,1 represents the element at the second row and first column of a matrix A. In mathematics, a matrix (plural matrices, or less commonly matrixes)… …   Wikipedia